Step of Proof: eq_atom_eq_false_elim_sqequal
12,41
postcript
pdf
Inference at
*
1
1
1
I
of proof for Lemma
eq
atom
eq
false
elim
sqequal
:
1.
x
: Atom
2.
y
: Atom
3.
x
=a
y
~ ff
4.
x
=a
y
= ff
(
x
=
y
)
latex
by
InteriorProof
((RW bool_to_propC (-1))
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat
CollapseTHEN ((Aut
1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
,
t
T
,
P
&
Q
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
assert
of
eq
atom
,
not
functionality
wrt
iff
,
assert
of
bnot
,
eqff
to
assert
,
iff
transitivity
,
not
wf
,
bnot
wf
,
assert
wf
,
bool
wf
origin